

BACK TO THIS EQUATION...

$$\Delta p = \frac{pq[p(w_{AA} - w_{Aa}) + q(w_{Aa} - w_{aa})]}{\overline{w}}$$
• We can see what happens with various types of selection by substituting explicit values for the fitnesses of the different genotypic classes.

CASE 2: HETEROZYGOTE ADVANTAGE -- OVERDOMINANCE
FITNESSES:

$$W_{AA} = 1 \cdot s$$
 $W_{Aa} = 1$ $W_{aa} = 1 \cdot t$
 $\Delta p = \frac{pq(-sp + tq)}{1 - sp^2 - tq^2}$
At equilibrium, p = t/(s+t).

Selection coefficients for sickle-cell anemia: Genotype frequencies from the Yorubas of Ibadan, Nigeria					
Genotype	Observed Adult Number (O)	Expected H-W Number (E)	Ratio (O/E)	Fitness (relative to AS)	
SS	29	187.4	0.155	0.155/1.12 = 0.14 = 1-t	
SA	2,993	2,672.2	1.120	1.12/1.12 = 1.00	
AA	9,365	9,527.2	0.983	0.983/1.12 = 0.88 = 1-s	
Total	12,387	12,387			
	FROM: Bodmer & Cavalli-Sforza. 1976				

Balancing Selection at the Prion Protein Gene Consistent with Prehistoric Kurulike Epidemics Simon Mead, et al.

 Mead et al. detected a large heterozygote excess for markers linked to the PRNP (prion protein) locus in a sample of women from Papua New Guinea that had been exposed to ritual cannibalism.

Observed: 30 of 50

• Expected: 15 of 50

Science 2003 300:640-643

HOW CAN SELECTION MAINTAIN POLYMORPHISM?

- Heterozygote advantage Also known as OVERDOMINANCE or HETEROSIS, results in a stable, polymorphic equilibrium.
- Varying selection If selection varies spatially or temporally, polymorphism may be maintained.
- Frequency-dependent selection the fitness of the genotype depends on its frequency in the population. If common genotypes have low fitness, then the polymorphism will be maintained.

OTHER FORMS OF FREQUENCY-DEPENDENT SELECTION

- Predator prey interactions: If predators form a "search image", then the predator keys on the most common prey giving a selective advantage to the rare prey.
- Parasite host interactions. Parasites may be selected to attack the most common host, and hosts may be selected to defend against the most common parasites.
- Mimicry systems example, venomous coral snakes and their non-venomous king snake mimics.

SEX RATIO EVOLUTION

- Fisher argued that the 50:50 sex ratio observed in most animals is the result of frequency-dependent selection.
- If the primary sex ratio is skewed, parents that produce more of the rare sex have a fitness advantage because their offspring will have higher mating success.
- Eventually, most populations evolve mechanisms that stabilize the sex ratio.

SELECTION – MUTATION BALANCE IN LARGE POPULATIONS

- Most new mutations are slightly deleterious.
- In large populations the equilibrium frequency of deleterious mutation is determined by a balance between the input by mutation and removal by selection.

WHAT IS THE FREQUENCY OF THE DELETERIOUS MUTANT ALLELE AT EQUILIBRIUM???

∆q = loss due to selection + input by mutation = 0

MUTATION – SELECTION BALANCE
FITNESSES:

$$W_{AA} = 1$$
 $W_{Aa} = 1$ $W_{aa} = 1 - s$

$$\Delta p = \frac{spq[h(1-2q)+q]}{1-2pqhs-sq^2}$$
 $h = 0$, and Δq is equal to (-1)* Δp , so
 $\Delta q = -\frac{spq^2}{1-sq^2} = -\frac{spq^2}{\overline{W}}$

MUTATION – SELECTION BALANCE

At equilibrium, the change in allele frequency due to mutations is exactly equal to the change due to selection, so: 2

$$up - \frac{spq^2}{\overline{w}} = 0$$

The deleterious allele is rare, so mean population fitness is approximately equal to 1. Thus,

$$up \cong spq^2$$
 and $\hat{q} \cong \sqrt{rac{u}{s}}$

Assume q is small, and
$$u >> v$$
:

•Selection against a completely recessive allele:

$$W_{AA} = 1$$
 $W_{Aa} = 1$ $W_{aa} = 1 - s$
 $\hat{q} \simeq \sqrt{\frac{u}{s}}$

•Selection against a completely **dominant** allele:

$$W_{AA} = 1$$
 $W_{Aa} = 1 - s$ $W_{aa} = 1 - s$
 $\hat{q} \simeq \frac{u}{s}$

Assume *q* is small, and *u* >> v :
•Selection against a partially recessive allele:

$$W_{AA} = 1$$
 $W_{Aa} = 1 - hs$ $W_{aa} = 1 - s$
 $\hat{q} = \frac{u}{hs}$

